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Oscillating flows over periodic ripples are of practical as well as scientific interest 
because of their relevance to beach processes. When either the ripples are sufficiently 
steep or the amplitude of ambient oscillations large, streamlines of a viscous flow are 
no longer parallel to the ripple surface. Circulation cells are formed which can help 
redistribute suspended sediments. Here we study theoretically these cells for a low- 
viscosity fluid such as pure water over rigid ripples. In particular we have calculated 
cells whose dimensions are as large as the ripple wavelength and therefore represent 
viscous effects far above the usual Stokes boundary layer. An idea of Stuart which 
was originated for stationary mean circulations around a cylinder is extended here. 
For large ambient amplitude, large oscillating vortices drifting with the ambient flow 
are found by seeking the stationary cells in a moving coordinate system. 

1. Introduction 
Sand ripples are frequently found on beaches under the influence of surface waves. 

When the amplitude of the water oscillation is sufficiently large, vortices are formed 
in the lee of every crest. Since much dissipation takes place in these vortices, the rate 
of damping of the surface waves must increase. Vortices are also effective in 
dislodging sand particles and keep them in suspension, hence they contribute to the 
evolution of the ripples themselves as well as the transport of sediments by waves 
and currents. The flow above natural ripples is often turbulent and coupled to the 
motion of sand, hence theoretical analysis is extremely difficult. Past analyses in the 
literature of coastal engineering have been empirical and concerned with the effect 
on the friction factor; the detailed mechanism is usually bypassed. When the 
amplitude of the ambient oscillations is very weak, however, laminar flows can 
occur ; this situation is easy to realize in the laboratory, especially with rigid and 
smooth ripples. A theoretical study of laminar oscillatory flows over smooth rigid 
ripples is of course simpler, and is a helpful first step towards a better understanding 
of the turbulent, two-phase problem in nature. Not all motivated by beach processes, 
several authors have undertaken such studies. 

Because the typical wavelength of sand ripples is O( 10 cm) or less, while that of the 
gravity waves is O ( l 0  m - 100 m), K / k  4 1 where K and k are respectively the 
gravity wavenumber and the ripple wavenumber. The local mechanics of ripples 
within the scale of a few ripple lengths should not be directly affected by the gravity 
wavelength. If the water depth h is such that Kh = 0(1) ,  then the free surface is far 
above the seabed as far as the ripples are concerned. Here we shall only consider the 
approximate model in which kh+w and K / k + O ,  implying that the gravity waves 
are infinitely long and the free surface is infinitely far away. The viscous region near 
the rippled bed then lies beneath a large depth of inviscid fluid. The global effects of 
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gravity wavelength are manifest over a much longer scale and can be studied by a 
multiple scale analysis. This will not be pursued here. The important physical 
parameters in the laminar problem are the frequency o, the amplitude A of ambient 
oscillation, the ripple wavenumber k and amplitude a, and the fluid viscosity v. From 
these one can define three dimensionless numbers: the ripple slope E = ka, the 
Keulegan-Carpenter number a = kA, and the viscosity parameter CT = kS where 6 = 
( v / w ) i  is the thickness of the Stokes boundary layer. 

It is well known that a t  the outer edge of the Stokes layer, the tangential 
component of the induced streaming velocity does not always vanish and has a finite 
limit Q (see Schlichting 1955). Stuart (1963) was the first to point out, for a cylinder 
of radius i l k ,  that  if the Reynolds number based on the induced streaming R = U, /kv  
is large, an outer boundary layer of thickness 6, = O(k-'R-i) must exist. In this 
thicker layer convective inertia and viscous diffusion are equally important, Riley 
(1967) and Wang (1968) further clarified that if R 4 1 viscous diffusion alone 
dominates outside the Stokes layer, and therefore the problem may be linearized 
both inside and outside the Stokes layer. On the other hand, when R 2 0(1), the 
equation governing the steady streaming in the outer layer becomes fully nonlinear. 
In the ripple problem here the velocity U, is of O(wkA2) if A 4 a - l / k  and O(okaA) 
if a 4 A - 1/12 (see later analysis). In  the first case, R = (A/&' = (a/cr)' while in the 
second R = ( a A / P )  = ae/(r2.  For small enough viscosity (r 4 1 so that R > 0(1 ) ,  in 
both cases an outer layer must exist. The corresponding layer thicknesses are 
respectively 6,/6 = O(kA)-l = O(a)-' and 6,/6 = O(ae)-$. 

In existing literature on oscillatory flows over rippled surfaces, only the case of 
R 4 1 has been treated, in which the Navier-Stokes equations can be linearized. The 
first theory was given by Lyne (1971) who gave a perturbation analysis for small e/cr 
to O(e/cr).  He calculated the steady streaming and found stationary cells inside the 
Stokes layer for both small and large a. These cells can keep the sediments in 
suspension, once the latter are mobilized by the stronger oscillatory flow. Since by 
definition small ~ / c r  implies small a/S, the ripples in his theory must be completely 
immersed in the Stokes layer. Sleath (1974a) assumed both small a and small E ,  and 
obtained the cellular pattern of Lagrangian mass transport, including the long-scale 
modulation of the ambient flow due to wave motion. Kaneko & Honji (1979) 
introduced a perturbation analysis for small a but finite E / U ,  and found reasonable 
agreement with experiments when E / U  < 0.7. The experiments were performed in a 
glycerin/water mixture whose viscosity is 100 times that of pure water; the 
corresponding u was 0.1 - 0.6 and not small. The induced streaming recorded 
photographically is again a feature within the Stokes layer. Matsunaga, Kaneko & 
Honji (1981) first linearized the Navier-Stokes equations by assuming small a, and 
solved the initial-value problem numerically to obtain the steady streaming a t  O(a) 
under periodic forcing. Their calculation agreed well with the observed flow patterns 
for E = 0.45 and CT = 0.05 - 0.6. Recently Vittori (1989) has extended Lyne's theory 
to O ( E / L T ) ~  for a = O(1). She calculated only the steady streaming by solving 
numerically the first- and second-order Navier-Stokes equations. I n  her analysis, the 
Stokes layer thickness is also much greater than the ripple amplitude, which is not 
the case for most ripples in nature. 

For finite E and a, discrete numerical methods have been applied t o  initial-value 
problems of the full NavierStokes equations by Sleath (1974b, 1975), Sato, Mimura 
& Watanabe (1984), and Shum (1988), for parameters directly relevant to pure 
water. One of the main results is the presence of oscillating vortices whose dimensions 
and heights above the ripples are comparable with the ripple wavelength, and much 
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greater than the Stokes layer thickness. In these works accurate computations are 
costly; detailed results are not easy to obtain. There are also related analytical and 
numerical theories for oscillating flows through a furrowed channel by Sobey (1980, 
1982, 1983) and Ralph (1986). The objectives and the physics of these studies are 
rather different because the width of the channel is comparable with the ripple 
length. 

For cases where an outer layer of convective inertia is present, induced streaming 
has been studied before for cases where the free surface waves are of direct relevance. 
For the mass transport beneath a standing wave on a horizontal seabed this topic has 
been examined by Mei, Liu & Carter (1972), Dore (1976), Liu & Davis (1977), all of 
whom deduced the Blasius boundary-layer equations as did Stuart (1963) for a 
cylinder. But these theories need revision at the point where two neighbouring 
boundary layers converge and must turn vertically upwards (see Davidson & Riley 
1972 for a circular cylinder). Haddon & Riley (1983) overcame this difficulty by using 
the full nonlinear steady NavierStokes equations, and obtained numerical results 
valid in the outer layer and in the region of upward flow. For an uneven seabed Riley 
(1984) has also analysed the mass transport in the outer layer over periodic bars 
whose wavelength is comparable with the free surface wavelength and the sea depth. 

In this paper we shall study two-dimensional laminar oscillations of a fluid with 
low viscosity, bounded on one side only by a spatially periodic rigid wall. Responses 
will be assumed to be strictly periodic in time. Two complementary cases will be 
studied by combining analytical approximations and numerical computations ; ( i )  
small a but finite 8, and (ii) small 6 but finite a. In both of them the fluid viscosity 
is so low that R O ( l ) ,  therefore our parameter regime is different from those in 
earlier analytical studies and corresponds to situations that can be tested in the 
laboratory with water. 

In  Case (i) we first carry out the usual analysis for the Stokes boundary layer. and 
obtain the steady Eulerian streaming velocity just  outside the Stokes layer. The 
outer layer of convective inertia is then examined. Stationary cells of steady 
streaming in the outer layer are found; they are of dimensions comparable with the 
ripple wavelength. Effects of increasing ripple slope is explored. 

I n  Case (ii), the goal is to find oscillating vortices high above the ripples. We 
accomplish this by first employing a coordinate system oscillating with the ambient 
fluid. Cells of induced streaming, stationary with respect to the oscillating coordinate 
system and in the outer layer, are calculated. Upon returning to the stationary frame 
of reference, these cells are precisely the viscous vortices oscillating to and fro high 
above the ripples. The amplitude of their displacement is the same as that of the 
ambient fluid and is therefore comparable with the ripple length; their strength 
never decays with time. These results are quite consistent with the numerical 
solution of initial-value problems based on the full Navier-Stokes equations, but 
shed more light on the mechanism of oscillating vortices over a rippled bed. 

2. Formulation in orthogonal coordinates 
We shall employ the well-known conformal mapping (Benjamin 1959; Lyne 1971) 

so that the space above the rippled wall in the z' = xr + iy' plane maps onto the upper 
half-plane of 6' = c + i ~ ' .  In  real coordinates the mapping is defined by 

(2.2a, 6 )  

2' = c+iaeikC (2.1) 

x' = c - aeck7' sin kc ; yr  = q' + ae-""' cos kc. 
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The constant coefficient a is a measure of the ripple amplitude. The Jacobian of 
transformation is 

J = --71-;- = l - 2 k a e - k f c o s k ~ + ( ~ a ) 2 e - 2 k ~ ' .  (2.3) 
a(x' Y') 
a(5 7 11 1 

We shall assume that 6 = ka is always less than 1 at which limit the crests of the 
ripples become cusps. While a more general transformation can in principle be used 
by adding higher harmonics, (2.1) is sufficiently versatile for describing all ripples 
qualitatively. 

Let the velocity vector be expressed in both planes by 

uf = u'i+wlj = U'e,+ V'e,, (2.4) 

where eg and ev are unit vectors along 11' = constant and g' = constant respectively. 
Since 

the velocity components in the two planes are related by 

Let the stream function $'(x', y') = $'($', y') be defined by 

then 

In  the mapped plane the vorticity equation can be written as 

where 

(2.9) 

(2.10) 

The following boundary conditions will be imposed on the wall : 

$ ' = y = o ,  all.' $ = O ,  (2.11a, b)  
a4 

-= a$' 0, = ~Acoswt' ,  7' - 0 0 .  (2.12a, b)  ac a11 
and a t  infinity 

It is convenient to begin with the following normalization which is appropriate for 
the Stokes layer near the ripple surface: 

(2.13) 
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where 6 = ( v /w)$ .  Equations (2.9)-(2.12) then become 

187 

where 

(2.16a, b )  

(2.17) 

is a distorted Laplacian operator, and 

J = 1 - 2s cos t e-"V + s2 e-2g$. (2.18) 

The three dimensionless parameters a, s and have already been defined in 
$ 1 .  Equations (2.14)-(2.18) will be the basis of analysis in $93-6. Our basic assump- 
tions will be that v 4 1 and that either a or 8 is small. More specifically we set 
CT ,< O(a) < 1, E = O(1) in Case (i), and cr < O(sa)i 4 1, a = O(1) in Case (ii). 

3. Case (i). Weak oscillations but finite ripple slope: a 4 1, 6 = O(1). The 
Stokes layer 

This is a direct extension of the classical problem of an isolated cylinder in an 
oscillating fluid. We proceed by first examining the Stokes layer and then the outer 
layer of convective inertia. 

Since a < 1 we introduce expansions in powers of a: 

$ = $o+a$,+a2$2+... (3.1) 

and 

where e 7 =  1-2€cOs~+€2. 

To the leading order, O(ao), (2.14) and (2.15) give 

(3.4) 

At infinity only (2.16b) can be satisfied: 

In this boundary-value problem the coordinate E is only a parameter. The solution 
is simply that of Stokes boundary layer over a plane: 

(3.7) 

7 FLM 211 
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where 

At the outer edge of the Stokes layer this solution yields 

= [cost]?+ y e i t + *  , -m. 
r:Y 1 

(3.8) 

(3.9) 

The second term implies that there is vertical transport to and from the Stokes 
boundary layer, which will induce a potential flow outside the Stokes layer. 

At the next order, O(a) ,  the governing equation is 

ie sin 6 
4J 

+ - 7 e h  e21t + *. (3.10) 

The solution consists of zeroth, first and second harmonics in time. On the ripple 
surface 7 = 0, the boundary conditions (2.15a, b)  still apply. But at, 7 - co, it is 
necessary to relax (2.16): for the sake of the zeroth harmonic, to 

(3.11) 

As a consequence I++1 and aI++,/aE will grow linearly in 7, and this must be remedied 
by adding the outer layer later. The solution is now given as 

From this we obtain at the outer limit of the Stokes layer, 

(3.12) 

1 3e 5 d 2 e s i n t  (T 1 iesin 1 
4 J2 a 4iJ2 4J2 4 2 7  

@l = [-sin 61 y + ( - K T +  -- (e cos 5- €2)  eit + * - --elit + * . 

(3.13) 
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FIGURE 1. Tangential component of induced streaming velocity a t  the outer edge of a Stokes layer. 

The first term proportional to 7 implies a steady tangential streaming velocity a t  

(3.14) 

I n  fi ure 1 we plot the tangential component of the induced streaming velocity 
U = D(i3$Ja~)Im in the mapped plane as a function of 6 and E .  As the ripple slope E 

increases, the magnitude of the streaming increases and its peak migrates towards 
the crest (6 = 0, an). 

The steady Eulerian streaming inside the Stokes layer, given by the zeroth 
harmonic of (3.12), is plotted in figure 2 in the dimensionless plane of ks' and ky'. To 
examine the effect of ripple slope we vary E from 0.1 to 0.5 and keep CT at fixed value 
(=  0.03). I n  all cases there is a pair of vortices between adjacent crests, and the 
streaming near the ripple surface is directed from a trough to  a crest. These vortices 
become stronger and are squeezed towards crests as the ripple slope increases. 
Another pair of half-vortices is stacked above the lower pair. These correspond to 
the lower part of the outer layer to be examined in the next section. 

- F  

4. Case (i). The outer layer of convective inertia 
By requiring that convective inertia and viscous diffusion are comparable in the 

induced streaming, it can be shown that there must be another layer which lies 
above, and is O( l/a) times as thick as, the Stokes layer. Therefore we introduce the 
following normalization : 

J =a+, t j  = ay (4.1) 

so that the vorticity equation becomes 
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FIGURE 2. Stream-function cont,ours of Eulerian streaming in a Stokes layer. Numbers adjacent to 
the streamlines represent the values of @.,. The vertical scale is stretched by a factor of 4. u = 0.03. 
( a )  E = 0.1, A@1 = 0.006: ( b )  E = 0.3, = 0.03; (c) E = 0.5, A@, = 0.15. 

where 

and 

(4.3) 

(4.4) 

is a resealed Laplacian. It is further assumed that, c/u < O( 1). The boundary 
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conditions a t  fj = 0 are determined by requiring that the stream function and the 
tangential vclocity are matched with the Stokes layer a t  each order. We now expand 

$ = qcost+a$,+a2@,+ ..., (4.5) 

where the first term is matched with the first term of (3.9). At the next order, @a'), 
we find from (4.2) 

a -  -v$, = 0. (4.6) at 

The Stokes-layer solutions which should be matched a t  this order are the second term 
of (3.9) and the first term of (3.13). Therefore the solution must be composed of both 
zeroth and first harmonics: 

$1 = ?R(& 71") + [$x, r") eit +*I. (4.7) 

From (4.6) the first harmonic is a potential flow governed by the following Laplace 
equation : 

V'"$:=o, i j > o .  (4.8) 

The boundary condition a t  i j  = 0 follows from the second term of (3.9), 

we also impose -- a$; - 0, q - m .  (4.10) 

The forcing term in (4.9) can be expanded as a Fourier series in 6: 
ar" 

1 1 " O  -, - - X a, cos nfl, - 1 

27 2yJ5 2y 

where the Fourier coefficients are proportional to hypergeometric functions 

and 

(4.1 I )  

(4.12) 

-1-i 
y=- (4.13) 

d 2  . 
m 

It follows readily that +: - 1  = - [ao+xunexp(  -nz i j )cosn6] .  

2Y 1 

This solution gives rise to the following normal derivative a t  the bottom : 

a$: 1 CT -- - --C -n-u,cosnC, i j  = 0. ar" 2Y 1 a 

(4.14) 

(4.15) 

The Stokes-layer solution (3.12) must now be adjusted by adding the following term: 

(4.16) 
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FIGURE 3. Stream-function contours of the first harmonic in a Stuart layer. Kumbers adjacent to 
the streamlines represent the values of $-a,. ( a )  E = 0.1, A$ = 0.025; ( b )  E = 0.3, A$ = 0.05; ( c )  
6 = 0.5. A$ = 0.1. 
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which satisfies the homogeneous equation of (3.10). The first harmonic in the outer 
layer can be now written as 

+:el'+* = ($+*)$ = -cos(t-+n)$, 

$(t,$) = a,+Ca,exp -n-$ cosng (4.18) where 

is the spatial structure of the first harmonic. I n  figure 3 we plot $(t, i j )  in the kx' ws. 
ky' plane for e = 0.1, 0.3, and 0.5. There is transport of fluid to and from the Stokes 
layer; this transport becomes more intense around a crest for a steeper ripple. 

The zeroth harmonic which represents steady streaming satisfies (4.6) trivially. 
Further information must come from higher orders. At O(a2) the vorticity equation 

(4.17) 

00 

( 3 1 

gives 

hence 

(4.19) 

(4.20) 

where.f may be determined at  a higher order but will not be needed for our purposes. 

Upon inserting (4.7) and (4.20), taking the time average of (4.21) and using (4.8), we 
finally obtain the governing equation for & : 

(4.22) 

The boundary conditions a t  the bottom follow from the second term of (3.9) and the 
first term of (3 . i3)  (or (3.14)): 

@ = o ,  $ = O ,  

At infinity we expect the steady streaming to vanish, and impose 

(4.23) 

(4.24) 

(4.25) 

Thus the steady streaming in the outer layer is governed by the steady Navier-Stokes 
equations including convective inertia, and is driven a t  the bottom by a spatially 
periodic steady tangential velocity. If v/a < 1,  the [-derivative in the Laplacian 
operator v2 can be omitted; (4.22) can be integrated once to yield the Blasius 
boundary-layer equation. This limit was first shown by Stuart (1963, 1966) and Riley 
(1965) for a circular cylinder. However, when there are two boundary layers 
converging toward each other over a ripple trough, the flow must then turn away 
from the wall as a jet; the Blasius approximation breaks down. To treat this 
transition into a jet new remedies are needed, as described by Davidson & Riley 
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FIQURE 4(a ,b) .  For caption see facing page. 

(1972) for the circular cylinder. Since the fuller equation (4.22) can be solved by 
existing numerical means, the Blasius limit will not be discussed here. This approach, 
with boundary conditions imposed at  a finite height (instead of (4.25)) has been used 
before by Haddon & Riley (1983). 

Because the boundary condition (4.24) is sinusoidal in 5 we employ the spectral 
method and expand @ as a Fourier series 

(4.26) 
00 

fi  = Z b,  sin n?& 
1 
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FIGURE 4. Stream-function contours of Eulerian streaming in a Stuart lnyer. Xumbers adiacent to 
the streamline_s represent the values of $!. u/cr = 10. ( a )  E = 0.1, A$: = 0.05; (b )  E = 0.3. A$: = 0.2; 
(c) E = 0.5, A$: = 0.4. 

An infinite set of nonlinear ordinary differential equations coupling the functions 
bn(71) results. After truncation a t  finite terms the equations are approximated by 
finite differences in i j  with smaller grids for smaller i j .  The difference equations are 
solved by Newton-Ralphson iteration. Since the method is known and has been 
employed before in similar mat,hematical problems (Caponi et al. 1982), details are 
omitted here. This numerical task is of course far simpler than that needed to solve 
the exact transient Navier-Stokes equations. 

We show in figure 4 the steady vortices in the outer layer in the dimensionless 
plane of kx’ and ky’. Again we vary E from 0.1 to 0.5 and keep (T and a a t  fixed values 
( a / r  = 10). In  all cases there is a pair of counter-rotating vortices between two 
adjacent ripple crests. The size of these vortices is of the same order as the ripple 
wavelength. As E increases the vortices grow larger in size and stronger in magnitude. 
The flow near the crest is intensified by the forcing from the Stokes layer. The effects 
of increasing R = (a/u)* by either increasing a or decreasing (T are similar to those in 
$6. In particular asR increases the upward flow from the trough intensifies to become 
jet-like. No plots are shown here. I n  the calculations of Haddon & Riley, the steady 
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Lyne (1971) ( i )  
Lyne (1971) (ii) 
Sleath (1974a) 
Kaneko & Honji (1979) 
Matsunaga et al. (1981) 
Vittori (1989) 
This study, Case (i) 
This study, Case (ii) 

Parameter regime Reynolds number 
a Q 1, €/U Q 1 
a + l , E / u Q l , u Q l  
a Q l , € Q l  
a -g 1 ,  €/U < O(1)  
a << 1, E = 0(1), 
a = 0(1), €/U Q 1 
a e l , e = O ( l )  
a = 0(1), E Q 1 

TABLE 1 .  Summary of regimes of validity of various theories 

streaming cells outside the Stokes layer on a flat bed under standing waves has a 
finite height because the horizontal wavelength is comparable with the water depth. 
Therefore the vertical jets are strongly inhibited by the free surface; this situation 
is different from ours where the water depth is much greater than the ripple 
wavelength. 

Combining figures 2 and 4, we obtain the whole picture of steady streaming 
consisting of two pairs of vortices ; the larger pair stacked above the smaller. This 
result is qualitatively similar to those by Lyne (1971) for small e and a,  and extended 
by Kaneko & Honji (1979) and Matsunaga et al. (1981) for finite E .  However, their 
theory is derived for a different regime of a much thicker Stokes layer. In  table 1 ,  we 
summarize the regimes of validity of these theories, noting in particular the 
constraints on the Reynolds number which is defined differently in different 
situations. 

So far the solutions have been obtained up to O(a)  both in the Stokes layer and in 
the outer layer of convective inertia. Terms in the second pair of brackets on the 
right-hand side of (3.13), which correspond to the normal velocity a t  the outer edge 
of the Stokes layer, should be matched to an O(a2) solution G2 in the outer layer. 
Because its effect is always of O(a2), we do not pursue i t  here. 

5. Case (ii). Strong oscillations but small ripple slope: a = O( l ) ,  8 4 1. The 
Stokes boundary layer 

number. 
In  this and the next section focus will be on the case of finite Keulegan-Carpenter 

5.1. Analysis 
First it is advantageous to  transform from (2.1) to the coordinate system oscillating 
with the ambient fluid : 

[= 6-asint = k(g'-Asinwt'). (5-1) 

All other normalizations in (2.13) are kept. The vorticity equation in Stokes-layer 
coordinates now become 
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where the Laplacian operator is still given by (2.17) except that 6 must be replaced 
by c. The Jacobian now takes the form 

J = 1 - 2s cos ([+a sin t) e-9 + s2 e-*Oq. (5.3) 

The boundary conditions (2.15) and (2.16) of course remain valid. 
We begin by substituting the following expansions : 

II. = $0 + .$l + O ( 4 ,  (5.4) 

1 
J 
- = 1 + 2e cos ([+ a sin t )  + ~(s : ) ,  (5.5) 

into (5.2) and the boundary conditions (2.15) and (2.16). 
At O(eo), the solution of $,, is 

1 
$lo = ++[q+-(i-eyV)]+*, Y (5.6) 

where y is given by (4.13). Unlike (3.7), the solution here is independent of [. At the 
outer edge of the Stokes layer this solution yields 

y?o = [cost]q+ --It+* , 7 NCO,  (5.7) [:Y 1 
where the second term now does not induce any vertical velocity. 

At O(e) the perturbation equation for is 

* a($,, 2 cos ([+ a sin t )  a 2 + o p , q  a47bO 
act, 7) av4 + 2 cos (5 + a sin t )  - . (5.8) = a  

The details of the right-hand side can be worked out to be 
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where Jn(a) is the Bessel function of order n. Use has been made of the following 
identities 

sin @+ a sin t )  = sin fcos (a sin t )  + cos [sin (a sin t )  

=(s ine  c -icosc c 
n-even n-odd 

and 

(5.10) 

(5.11) 

The form of the forcing term in (5.9) implies that sin [ is multiplied by only even 
harmonics, while cos c by only odd harmonics, in time. 

We now assume that 4) 

= c eint (e is 1CIn,1+e-"@n,-,)* (5.12) 
-m 

For $, to be real it is necessary that 

e-i'@.,*, , + e i ~ + ~ . - l  = eif$-n, +evil@ - n , - l *  (5.13) 

Hence @,,-, = @?n,l or, equivalently $,*., = @-n,- l .  (5.14) 

By substituting (5.12) into (5.8) and collecting the coefficients of einte'S, we obtain a 
system of ordinary differential equations for $n, : 

i n ~ ~ , l - f i a e ~ ~ ~ @ ~ ~ l , l - ~ i a e ~ * ~ @ ~ + l , l - ~ a e ~ ~ @ n ~ l , l  +iaeY*q @n+l,l-@Tl 
a a 

= - - ( l - e y ~ )  [ - r e ~ ' / J , - ~ ( a ) - y * e ~ * ' / J , ( a ) ] + ~ ( l  -eY*q) [-reY"n(ol)-y*e~*"n+2(a)] 

(5.15) 

From the even and odd parity of the forcing term (5.9), a further symmetry 

4i 41 

-ti? eY" Jn-l (a) + $y* eY*" J,+,(a). 

relation can be deduced. Let the left-hand side of (5.8) be denoted by 
m m c eint (~, , ,e i f -L n ,  -1 e-") = x eint ~ ~ ~ s ~ ~ ~ , , , + ~ , , ~ , ~ + i s i n ~ ~ ~ , , , - ~ , , ~ , ~ ~ ,  

-m -m 
(5.16) 

where L n , ,  corresponds to the left-hand side of (5.15). To conform with the parity on 
the right-hand side of (5.8) (see (5.9)) we must have, for the coefficients on the right 
of (5.16), 

Ln, ,+Ln,_ ,  = 0, n =even;  Ln, l -Ln, - l  = 0, n = odd; (5.17) 

After inferring the expression for Ln,- ,  from the left-hand side of (5.15) we find 

L n , l + L n , - l  = in(@i,l+ll. '~,-l)-~a(ieY~) (@i-l,lT1l.'h-l,-l) 
- - 

-Ba(iey*') ( l l . ' h + i , i + ~ h + i , - i ) - ~ a e Y ~ ( @ n - i , i  +@n-I,- l )  

+ ~ e ~ * ~ ( ~ n + l , l ~ $ n + l , - l ) - ( ~ ~ l ~ ~ ~ - ~ ) .  (5.18) 
Since when n = even, n+ 1 = odd and vice versa, we conclude from (5.17) that 

@ n , 1  = - ( - I n $ n , - 1 .  (5.19) 

With the help of (5.14) and (5.19), only one quarter of the unknowns of enV and @nq-l  

needs to  be computed. 
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The boundary conditions (2.15a, b )  imply that 

$nJ = $;,I = 0, 7 = 0. (5.20) 
The simultaneous differential equations (5.15) are linear but with variable 
coefficients, and must be solved numerically. The technique used is similar to that of 
Hall (1978) and combines the asymptotic representation for large 7 and finite 
difference approximation for intermediate to small values of 7. For large 7 we drop 
the exponentially small terms and obtain from (5.15) that 

in@: , l -v  n, 1 = 0 (5.21) 

for all n = + O ,  1,2, ... . For the velocity to be bounded a t  infinity we take 

$o,1 =Ao+Bo,, $n,i =An+B,exp[-(in)~71, n+0 (5.22) 

where 1 +i  (in); = Inl: - , n > o 
d 2  

(5.23) 

Note that for the zeroth harmonic the horizontal velocity is not required to vanish 
at infinity. 

In  view of (5.14) and (5.19) we must have for n =I= 0 

A_,  + B-, exp [ - (-in)iq] = - ( - )" {A,* +B,* exp [ - ( - in)iq]}. (5.24) 

Thus A_,  = - ( - ) " A , * ,  B-, = -(-),Bn*. (5.25) 

Ao+Bo7 =-A,*-B,*v (5.26) Similarly for n = 0 we have 

so that A ,  = -A,*, B, = -B* 0 '  (5.27) 
Thus A ,  and B, are pure imaginary. Physically B, corresponds to the tangential 
induced streaming at  the outer edge of Stokes layer. 

In  computations the series (5.12) is truncated at  a large value n = N .  For 7 > qM 
(5.22) is used with (5.12) to represent the solution. For 7 < qM the fourth-order 
Runge-Kutta method is applied to integrate (5.15) downward from q M .  The initial 
values of the $n , l  and their derivatives at 7 = y M  are expressed in terms of 
asymptotic representation with unknown coefficients A,, and B,, which are 
determined by the boundary conditions a t  7 = 0. 

5.2. Results and discussion 
After solving for all harmonics we obtain the stream function $, + qh1 in the entire 
Stokes layer. At the outer edge of the Stokes layer $l becomes 

00 

$l = [B, eii+ *] 7 + A ,  eint[eif- ( - )" e -it -1). 7 -a. (5.28) 

I n  particular the first term leads to  a non-zero steady streaming velocity in the 
oscillating frame of reference. The corresponding tangential velocity in the mapped 
plane of 5 , ~  is 

<v> = ($9) =B,ei[+*+O(a) = csini+O(e) ,  9 -a. (5.29) 

i-, 

Use has been made of the fact that  B, = -!$C is imaginary. 
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FIQURE 6. Stream-function contours of Eulerian streaming in a Stokes layer. Numbers adjacent to 
the streamlines represent the values of 9,. (a )  a = 1.1,  A+, = 0.1; (6 )  a = 2.7, Ak, = 0.3; (c) a = 
4.0, A$, = 0.3; ( d )  a = 5.3, A+ir, = 0.3. 

5 

The amplitude C(a) is plotted in figure 5 as a function of a. Within the computed 
range of a : 0 < a < 6 ,  there are two zeros a t  a = 2.95 and 5.0. As a check of accuracy 
we note that in the limit of a 4 1, C + fa which agrees with (3.14) to the zeroth order 
in e.  

We now transform (5.29) back t o  the stationary coordinates 

(5.30) C “  ( U )  = Csin(E-asint) = (eis-(-)ne-iE)e-i”tJ,(a). 
21 -” 

The zeroth harmonic of (5.30) is the mean Eulerian drift a t  the outer edge of the 
StokeR laver as seen bv a stat,ionarv observer : 

---.I-- - - -  - - -  ._ . - _- . . ~~ 

.I - - - -  - --- -i 

( U ) ,  = C(a)J,(a)sin& 7 -co. (5.31) 



202 T. Hara and C. C. Mei 

The product CJ, is plotted in figure 5 also. It is nearly always positive except for the 
small intervals 2.4 < a < 2.95 and 5.0 < a < 5.5. Thus the Eulerian streaming just 
outside the Stokes layer is nearly always directed from ripple crests to ripple troughs 
(from g = 2nn to g = (2n+ 1) n). 

We shall not discuss the transient aspects of the interior of the Stokes layer, which 
is given by (5.12) including all the time harmonics. To obtain the Eulerian streaming 
inside the Stokes layer we first transfer (5.12) back to the stationary frame of 
reference and then take the time average. Sample results are shown in figure 6. For 
a = 2.7 and 5.3 when CJ, has negative maxima, there is only one cell between a ripple 
crest and its adjacent trough. However for a = 1.1 and 4 when CJ, has positive 
maxima, there are two cells stacked up vertically. Near the ripple surface, the 
streaming is always directed from a trough to a crest, implying that mass transport 
by waves tends to enhance the growth of sand ripples. This qualitative trend has 
been found by Sleath (1974b, 1975) for a different range of parameters. 

6. Case (ii). The outer layer of convective inertia 
6.1. Analysis 

As was shown in $ 5 ,  while both transient and steady motions are present inside the 
Stokes boundary layer of thickness 0(6), an oscillating observer sees only a steady 
streaming, a t  the outer edge. Since the tangential streaming velocity is of O(s) ,  
balance between convective inertia and viscous diffusion requires the presence of an 
outer layer O( l/(ae)t) times as thick as the Stokes layer. We therefore introduce the 
following renormalization which is convenient for the induced streaming : 

The definitions of c and t remain unchanged. The exact vorticity equation (5 .2)  is 

where 

and 

J =  1-22scos(c+asint)exp ( -- $+"."XP( -2), 

is a Reynolds number associated with the induced streaming. Again the boundary 
conditions a t  f = 0 are determined so that the stream function and the tangential 
velocity are matched with the Stokes layer a t  each order. 

We now introduce the expansions 

and (6.7) 
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where the first and the second t,erms of (6.6) are matched with the right-hand side of 
(5.7). The term O(& is in principle needed to match with the Stokes layer. Upon 
substituting (6.6) and (6.7) into (6.2) we find again that satisfies 

a -  
-V2Ij1 = 0 
at 

a t  O(e). The Stokes-layer solution which should be matched a t  this order is just the 
first term of (5.28). Thus#, can only depend on 5 and 71" and satisfies (6.8) trivially. 
At the next order, O(eg), yi;  satisfies the same equation (6.8), and is matched with the 
second term of (5.28) expressed in terms of the outer stream function defined in (6.1). 
But i t  will not be needed in the sequel. At O(s2)  the perturbation equation is 

(6.10) 
i a  Since cos t cos (c+ a sin t )  = --sin ([+a sin t)  a at 

the time average of (6.9) gives 

(6.11) 

which is once more the steady Navier-Stokes equations. The boundary conditions at 
r" = 0 follow from the first term in (5.28) (or (5.29)), 

$1 = 0, i j = 0  (6.12) 

(6.13a, b )  

Thus in the moving frame, flow in the outer layer is driven by a non-uniform 
tangential velocity at the lower boundary. The governing parameters of this problem 
are the Reynolds number R, and the sign of the induced streaming a t  the outer edge 
of the Stokes layer. Because of the form of the boundary condition (6.12), it is only 
necessary to examine G > 0. The results can be used for negative C by shifting the 
origin of 5 by n. 

6.2. Results and discussion 
The numerical solution can be carried out by the Fourier method as in $4. We show 
in figure 7 the induced streaming in the moving coordinates ( [ , i j ) .  Within the 
horizontal extent of one ripple wavelength, there are two counter-rotating cells. As 
either a or E increases, or CT decreases, the Reynolds number R, increases; a jet is 
formed along [= n. The jet width decreases with R,. In  the stationary frame, the 
vortices and the jets, whose dimensions can be comparable with the ripple 
wavelength, traverse to and fro horizontally above the ripples. The amplitude of 
travel is equal to that of the ambient fluid and can be comparable wihh a ripple 
wavelength. This feature is consistent with the numerical results of Shum (1988) who 
solved the transient Navier-Stokes equations from rest. It should be mentioned that 
to a stationary observer the vortices can be seen only near the instant when the 
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FIGURE 7 (a, b ) .  For caption see facing page. 

ambient velocity vanishes. Otherwise they are overwhelmed by the O(1) ambient 
flow. 

The jet can be viewed in another manner by plotting the stream function q1 a t  
some height i j ,  as shown in figure 8. Clearly the width cf the upward flow becomes 
narrower with increasing R,. In the limit ofR, - co, the 6-derivative in the Laplacian 
v2 is again negligible. Equation (6.11) is integrated once to yield 

(6.14) 

This Blasius equation, together with boundary conditions (6.12) and (6.13b), can be 
solved numerically (see Davidson & Riley 1972). In figure 8 we also plot the result 
of this limiting case ; the width of the jet is now infinitesimal. Our solutions are seen 
to converge to this Blasius _solution as R, increases. 

So far we have used the (6, q)-coordinates in which vertical and horizontal lengths 
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FIGURE 7. Stream-function contours of induced streaming in moving coordinates in a Stuart layer. 
Numbers adjacent to the &_reamlines represent the values of (a )  R, = 1, A*, = 0.1 ; (b)  R, = 10, 

= 0.2; (c) R, = 100, A@l = 0.4. the vertical scale is redured. 
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FIGURE 8. Stream function GI at height + = 10 in a Stuart layer. 

are scaled differently. We now exhibit the vertical velocity V = -Ria a&,/aC along 
the axis ([ = x) as a function of undistorted vertical coordinate kq', in figure 9, where 
the magnitude of the vertical velocity is normalized by the maximum induced 
streaming a t  71 = 0. The vertical extent of the jet is seen to increase monotonically 
with R,, whereas its magnitude is bounded for large Reynolds number. 

s" 
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FIGURE 9. Vertical velocity along the axis ([= x )  in a Stuart layer, normalized by the 
maximum induced sbreaming at i j  = 0. 

The steady streaming in the stationary frame of reference is obtained as follows: 
a, 

J1 = c b,(ij) sin [ n ( ~ -  a sin t ) ]  
1 

The time average is simply 

(6.15) 

(6.16) 

where b, is the Fourier coefficient defined as in (4.26). We show in figure 10 the steady 
streaming in the stationary frame for 01 = 1.1 when C > 0 and CJ, is a positive 
maximum. There are two counter-rotating vortices with fluid sinking toward the 
crest and rising above the trough. As R, increases from 10 to 100, the intensity of the 
vortices as well as their vertical extent increases. The strong upward jet now 
disappears owing to the time averaging in the stationary frame. For a = 4, C < 0 but 
CJ, is still a positive maximum; the directions of the steady vortices remain the 
same. We have also computed the cases for a = 2.7 and 5.3 when CJ, are negative 
maximum; fluid sinks toward the trough and rises above the crest. But the 
circulation is very weak and is not presented here. 

We now comment on the works by Lyne (1971) and Vittori (1989), both of whom 
considered only the steady Eulerian streaming in the viscous region, where the 
convective inertia is never dominant. According to our argument in $1, their 
assumption of weak convective inertia is justified only i fR = ea/v2 < 1. In  contrast 
our theory is for the more practical case of R = ea/a2 2 0(1) where the viscous region 
is divided into two layers. The convective inertia is of the first-order importance in 
the outer layer but not in the Stokes layer. More specifically, Lyne (1971) has 
considered the case of a >> 1, aai = 0(1 ) ,  and e / a  < 1, to the first order in e l @ .  He 
obtained steady circulations of a multi-deck pattern in the Stokes layer. This pattern 
is not found in our analysis even for a = 6. Vittori, on the other hand, assumed a = 
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0(1) and a/6 = e/u 4 1 so that the ripples must also be completely immersed in the 
Stokes layer. For relatively small r (  < 0.2), her calculations of the steady streaming 
in the viscous region gives four cells if a < 2.4, but two cells if a > 2.4. This is 
consistent with our results in $ 5 ,  where we considered the Stokes layer and the lower 
edge of the outer layer, with the assumption that a = 0 ( 1 ) ,  e < 1, and r + 1 but 
arbitrary e / u  (Only in $6 is the assumption e / r 2  2 0(1) added). The agreement 
should therefore be expected. However, we have further shown that the four-cell 
pattern reappears for 2.95 < a < 5.0 and a > 5.5. Outside the Stokes layer the 
circulation by Vittori is weak, owing to the assumption of R < 1.  This is not the case 
in our theory, where not only is the steady streaming stronger, but the oscillating 
vortices are the strongest physical features, not discussed by her. For clarity, the 
parametric regimes of validity of the theories discussed above are also summarized 
in table 1 .  

7. Concluding remarks 
While there have been theories in the past on laminar oscillatory flows over rigid 

ripples, we have added new analyses for the cases in which either the ripple slope or 
the Keulegan-Carpenter number is finite, and furthermore the Stokes boundary 
layer is so thin that the Reynolds number is large. The analyses are carried out under 
the assumption that the flow is strictly periodic in time. In  the case of finite 
Keulegan-Carpenter number we have found that Stuart’s theory, which was 
originally devised for time-averaged circulations, can be applied to predict vortices 
that are convected to and fro by an oscillatory flow. These oscillating vortices owe 
their existence to viscous shear in the Stokes layer below, but rise far above into the 
region where the latter is of no direct influence. Because of the choice of the regime 
of parameters, our results can in principle be simulated and tested experimentally in 
ordinary water. 

I n  an earlier theory, Longuet-Higgins (1981) also treated the vortex generation by 
sharp-crested ripples under waves by a potential theory. In  his model, discrete 
vortices which emanate from the sharp crests a t  small intervals of time, interact with 
one another according to  the laws of potential flow. As the number of discrete 
vortices becomes large, their interaction becomes very complex. Longuet-Higgins 
then introduced a criterion to replace, a t  finite time intervals, the vortex clouds by 
a pair of point vortices, which then drift away to great heights. This physical picture 
is vastly different from ours. Controlled experiments are therefore needed to 
ascertain the realms of validity of both theories. 

A major assumption made here is that the flow is periodic in time. In  a nonlinear 
problem such as this this assumption may be realized only by a special initial 
condition. Recent numerical experiments (Shum 1988) by solving Navier-Stokes 
equations show evidence that if the periodic motion of the ambient fluid starts from 
rest, the response near the ripples quickly reaches a periodic state only if the 
Reynolds number is sufficiently small. Otherwise periodicity is not attained even 
after many periods permitted by the computation. The flow in the first half of a 
period can also be different from that in the second half. Effort and expense of such 
computations are however immense, and further analytical work, perhaps by 
examining the instability of strictly periodic solutions such as those discussed herein, 
may shed light on the possible transition to aperiodicity, or chaos. 

We thank the US Office of Naval Research (Contract N00014-83K 0550) and 
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